Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Curr Treat Options Oncol ; 25(5): 644-658, 2024 May.
Article in English | MEDLINE | ID: mdl-38656686

ABSTRACT

OPINION STATEMENT: Leiomyosarcoma (LMS) is one of the more common subtypes of soft tissue sarcomas (STS), accounting for about 20% of cases. Differences in anatomical location, risk of recurrence and histomorphological variants contribute to the substantial clinical heterogeneity in survival outcomes and therapy responses observed in patients. There is therefore a need to move away from the current one-size-fits-all treatment approach towards a personalised strategy tailored for individual patients. Over the past decade, tissue profiling studies have revealed key genomic features and an additional layer of molecular heterogeneity among patients, with potential utility for optimal risk stratification and biomarker-matched therapies. Furthermore, recent studies investigating intratumour heterogeneity and tumour evolution patterns in LMS suggest some key features that may need to be taken into consideration when designing treatment strategies and clinical trials. Moving forward, national and international collaborative efforts to aggregate expertise, data, resources and tools are needed to achieve a step change in improving patient survival outcomes in this disease of unmet need.


Subject(s)
Biomarkers, Tumor , Genetic Heterogeneity , Leiomyosarcoma , Precision Medicine , Humans , Leiomyosarcoma/genetics , Leiomyosarcoma/therapy , Leiomyosarcoma/diagnosis , Leiomyosarcoma/pathology , Leiomyosarcoma/mortality , Precision Medicine/methods , Prognosis , Disease Management , Disease Susceptibility , Molecular Targeted Therapy
2.
Clin Cancer Res ; 30(6): 1079-1092, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37916971

ABSTRACT

Epithelioid sarcoma (EpS) is an ultra-rare malignant soft-tissue cancer mostly affecting adolescents and young adults. EpS often exhibits an unfavorable clinical course with fatal outcome in ∼50% of cases despite aggressive multimodal therapies combining surgery, chemotherapy, and irradiation. EpS is traditionally classified in a more common, less aggressive distal (classic) type and a rarer aggressive proximal type. Both subtypes are characterized by a loss of nuclear INI1 expression, most often following homozygous deletion of its encoding gene, SMARCB1-a core subunit of the SWI/SNF chromatin remodeling complex. In 2020, the EZH2 inhibitor tazemetostat was the first targeted therapy approved for EpS, raising new hopes. Still, the vast majority of patients did not benefit from this drug or relapsed rapidly. Further, other recent therapeutic modalities, including immunotherapy, are only effective in a fraction of patients. Thus, novel strategies, specifically targeted to EpS, are urgently needed. To accelerate translational research on EpS and eventually boost the discovery and development of new diagnostic tools and therapeutic options, a vibrant translational research community has formed in past years and held two international EpS digital expert meetings in 2021 and 2023. This review summarizes our current understanding of EpS from the translational research perspective and points to innovative research directions to address the most pressing questions in the field, as defined by expert consensus and patient advocacy groups.


Subject(s)
Sarcoma , Transcription Factors , Adolescent , Young Adult , Humans , Transcription Factors/genetics , DNA-Binding Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Homozygote , Consensus , Sequence Deletion , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism , Sarcoma/diagnosis , Sarcoma/genetics , Sarcoma/therapy
3.
Lancet Oncol ; 24(11): 1277-1286, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37922931

ABSTRACT

BACKGROUND: Retroperitoneal sarcomas are tumours with a poor prognosis. Upfront characterisation of the tumour is difficult, and under-grading is common. Radiomics has the potential to non-invasively characterise the so-called radiological phenotype of tumours. We aimed to develop and independently validate a CT-based radiomics classification model for the prediction of histological type and grade in retroperitoneal leiomyosarcoma and liposarcoma. METHODS: A retrospective discovery cohort was collated at our centre (Royal Marsden Hospital, London, UK) and an independent validation cohort comprising patients recruited in the phase 3 STRASS study of neoadjuvant radiotherapy in retroperitoneal sarcoma. Patients aged older than 18 years with confirmed primary leiomyosarcoma or liposarcoma proceeding to surgical resection with available contrast-enhanced CT scans were included. Using the discovery dataset, a CT-based radiomics workflow was developed, including manual delineation, sub-segmentation, feature extraction, and predictive model building. Separate probabilistic classifiers for the prediction of histological type and low versus intermediate or high grade tumour types were built and tested. Independent validation was then performed. The primary objective of the study was to develop radiomic classification models for the prediction of retroperitoneal leiomyosarcoma and liposarcoma type and histological grade. FINDINGS: 170 patients recruited between Oct 30, 2016, and Dec 23, 2020, were eligible in the discovery cohort and 89 patients recruited between Jan 18, 2012, and April 10, 2017, were eligible in the validation cohort. In the discovery cohort, the median age was 63 years (range 27-89), with 83 (49%) female and 87 (51%) male patients. In the validation cohort, median age was 59 years (range 33-77), with 46 (52%) female and 43 (48%) male patients. The highest performing model for the prediction of histological type had an area under the receiver operator curve (AUROC) of 0·928 on validation, based on a feature set of radiomics and approximate radiomic volume fraction. The highest performing model for the prediction of histological grade had an AUROC of 0·882 on validation, based on a radiomics feature set. INTERPRETATION: Our validated radiomics model can predict the histological type and grade of retroperitoneal sarcomas with excellent performance. This could have important implications for improving diagnosis and risk stratification in retroperitoneal sarcomas. FUNDING: Wellcome Trust, European Organisation for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group, the National Institutes for Health, and the National Institute for Health and Care Research Biomedical Research Centre at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research.


Subject(s)
Leiomyosarcoma , Liposarcoma , Retroperitoneal Neoplasms , Sarcoma , Soft Tissue Neoplasms , Humans , Male , Female , Aged , Adult , Middle Aged , Aged, 80 and over , Leiomyosarcoma/pathology , Retrospective Studies , Sarcoma/pathology , Liposarcoma/diagnostic imaging , Liposarcoma/pathology , Soft Tissue Neoplasms/pathology , Retroperitoneal Neoplasms/pathology , Tomography, X-Ray Computed
4.
Cell Death Dis ; 14(11): 725, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37938546

ABSTRACT

Mesothelioma is an aggressive cancer of the mesothelial layer associated with an extensive fibrotic response. The latter is in large part mediated by cancer-associated fibroblasts which mediate tumour progression and poor prognosis. However, understanding of the crosstalk between cancer cells and fibroblasts in this disease is mostly lacking. Here, using co-cultures of patient-derived mesothelioma cell lines and lung fibroblasts, we demonstrate that fibroblast activation is a self-propagated process producing a fibrotic extracellular matrix (ECM) and triggering drug resistance in mesothelioma cells. Following characterisation of mesothelioma cells/fibroblasts signalling crosstalk, we identify several FDA-approved targeted therapies as far more potent than standard-of-care Cisplatin/Pemetrexed in ECM-embedded co-culture spheroid models. In particular, the SRC family kinase inhibitor, Saracatinib, extends overall survival well beyond standard-of-care in a mesothelioma genetically-engineered mouse model. In short, we lay the foundation for the rational design of novel therapeutic strategies targeting mesothelioma/fibroblast communication for the treatment of mesothelioma patients.


Subject(s)
Cancer-Associated Fibroblasts , Mesothelioma, Malignant , Mesothelioma , Animals , Mice , Humans , Mesothelioma/drug therapy , Mesothelioma/genetics , Fibroblasts , Lung
5.
Nat Commun ; 14(1): 3834, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37386008

ABSTRACT

Soft tissue sarcomas (STS) are rare and diverse mesenchymal cancers with limited treatment options. Here we undertake comprehensive proteomic profiling of tumour specimens from 321 STS patients representing 11 histological subtypes. Within leiomyosarcomas, we identify three proteomic subtypes with distinct myogenesis and immune features, anatomical site distribution and survival outcomes. Characterisation of undifferentiated pleomorphic sarcomas and dedifferentiated liposarcomas with low infiltrating CD3 + T-lymphocyte levels nominates the complement cascade as a candidate immunotherapeutic target. Comparative analysis of proteomic and transcriptomic profiles highlights the proteomic-specific features for optimal risk stratification in angiosarcomas. Finally, we define functional signatures termed Sarcoma Proteomic Modules which transcend histological subtype classification and show that a vesicle transport protein signature is an independent prognostic factor for distant metastasis. Our study highlights the utility of proteomics for identifying molecular subgroups with implications for risk stratification and therapy selection and provides a rich resource for future sarcoma research.


Subject(s)
Hemangiosarcoma , Leiomyosarcoma , Sarcoma , Soft Tissue Neoplasms , Humans , Proteomics , Sarcoma/genetics , Leiomyosarcoma/genetics
6.
Crit Rev Oncol Hematol ; 184: 103955, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36893945

ABSTRACT

Leiomyosarcoma (LMS) is a soft tissue sarcoma of smooth muscle origin that can arise in multiple anatomical sites and is broadly classified as extra-uterine LMS or uterine LMS. There is substantial interpatient heterogeneity within this histological subtype, and despite multi-modal therapy, clinical management remains challenging with poor patient prognosis and few new therapies available. Here we discuss the current treatment landscape of LMS in both the localised and advanced disease setting. We further describe the latest advances in our evolving understanding of the genetics and biology of this group of heterogeneous diseases and summarise the key studies delineating the mechanisms of acquired and intrinsic chemotherapy resistance in this histological subtype. We conclude by providing a perspective on how novel targeted agents such as PARP inhibitors may usher in a new paradigm of biomarker-driven therapies that will ultimately impact the outcomes of patients with LMS.


Subject(s)
Antineoplastic Agents , Leiomyosarcoma , Sarcoma , Uterine Neoplasms , Female , Humans , Leiomyosarcoma/therapy , Leiomyosarcoma/drug therapy , Sarcoma/pathology , Antineoplastic Agents/therapeutic use , Uterine Neoplasms/diagnosis , Uterine Neoplasms/genetics , Uterine Neoplasms/therapy , Biology
7.
Br J Cancer ; 128(10): 1941-1954, 2023 05.
Article in English | MEDLINE | ID: mdl-36959380

ABSTRACT

BACKGROUND: Systemic therapy for metastatic clear cell sarcoma (CCS) bearing EWSR1-CREB1/ATF1 fusions remains an unmet clinical need in children, adolescents, and young adults. METHODS: To identify key signaling pathway vulnerabilities in CCS, a multi-pronged approach was taken: (i) genomic and transcriptomic landscape analysis, (ii) integrated chemical biology interrogations, (iii) development of CREB1/ATF1 inhibitors, and (iv) antibody-drug conjugate testing (ADC). The first approach encompassed DNA exome and RNA deep sequencing of the largest human CCS cohort yet reported consisting of 47 patient tumor samples and 8 cell lines. RESULTS: Sequencing revealed recurrent mutations in cell cycle checkpoint, DNA double-strand break repair or DNA mismatch repair genes, with a correspondingly low to intermediate tumor mutational burden. DNA multi-copy gains with corresponding high RNA expression were observed in CCS tumor subsets. CCS cell lines responded to the HER3 ADC patritumab deruxtecan in a dose-dependent manner in vitro, with impaired long term cell viability. CONCLUSION: These studies of the genomic, transcriptomic and chemical biology landscape represent a resource 'atlas' for the field of CCS investigation and drug development. CHK inhibitors are identified as having potential relevance, CREB1 inhibitors non-dependence of CCS on CREB1 activity was established, and the potential utility of HER3 ADC being used in CCS is found.


Subject(s)
Sarcoma, Clear Cell , Child , Adolescent , Young Adult , Humans , Sarcoma, Clear Cell/genetics , Sarcoma, Clear Cell/metabolism , Sarcoma, Clear Cell/pathology , Transcriptome , Genomics , Base Sequence , RNA , Oncogene Proteins, Fusion/genetics
8.
Int J Biochem Cell Biol ; 157: 106383, 2023 04.
Article in English | MEDLINE | ID: mdl-36736718

ABSTRACT

Desmoplastic small round cell tumour (DSRCT) is an ultra-rare soft tissue sarcoma that is characterised by aggressive disease and dismal patient outcomes. Despite multi-modal therapy, prognosis remains poor and there are currently no effective targeted therapies available for patients with this disease. Advances in comprehensive molecular profiling approaches including next generation sequencing and proteomics hold the promise of identifying new therapeutic targets and biomarkers. In this review, we provide an overview of the current status of molecular profiling studies in DSRCT patient specimens and cell lines, highlighting the key genomic, epigenetic and proteomic findings that have contributed to our biological knowledge base of this recalcitrant disease. In-depth analysis of these molecular profiles has led to the identification of promising novel and repurposed candidate therapies that are suitable for translation into clinical trials. We further provide a perspective on how future integrated studies including proteogenomics could further enrich our understanding of this ultra-rare entity and deliver progress that will ultimately impact the outcomes of patients with DSRCT.


Subject(s)
Desmoplastic Small Round Cell Tumor , Humans , Desmoplastic Small Round Cell Tumor/genetics , Desmoplastic Small Round Cell Tumor/drug therapy , Desmoplastic Small Round Cell Tumor/pathology , Proteomics , Biomarkers
10.
Cells ; 11(15)2022 08 04.
Article in English | MEDLINE | ID: mdl-35954262

ABSTRACT

Synovial sarcoma is a rare translocation-driven cancer with poor survival outcomes, particularly in the advanced setting. Previous synovial sarcoma preclinical studies have relied on a small panel of cell lines which suffer from the limitation of genomic and phenotypic drift as a result of being grown in culture for decades. Patient-derived xenografts (PDX) are a valuable tool for preclinical research as they retain many histopathological features of their originating human tumour; however, this approach is expensive, slow, and resource intensive, which hinders their utility in large-scale functional genomic and drug screens. To address some of these limitations, in this study, we have established and characterised a novel synovial sarcoma cell line, ICR-SS-1, which is derived from a PDX model and is amenable to high-throughput drug screens. We show that ICR-SS-1 grows readily in culture, retains the pathognomonic SS18::SSX1 fusion gene, and recapitulates the molecular features of human synovial sarcoma tumours as shown by proteomic profiling. Comparative analysis of drug response profiles with two other established synovial sarcoma cell lines (SYO-1 and HS-SY-II) finds that ICR-SS-1 harbours intrinsic resistance to doxorubicin and is sensitive to targeted inhibition of several oncogenic pathways including the PI3K-mTOR pathway. Collectively, our studies show that the ICR-SS-1 cell line model may be a valuable preclinical tool for studying the biology of anthracycline-resistant synovial sarcoma and identifying new salvage therapies following failure of doxorubicin.


Subject(s)
Sarcoma, Synovial , Soft Tissue Neoplasms , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Heterografts , Humans , Oncogene Proteins, Fusion/metabolism , Proteomics , Sarcoma, Synovial/genetics , Sarcoma, Synovial/metabolism , Sarcoma, Synovial/pathology
11.
Front Oncol ; 12: 899180, 2022.
Article in English | MEDLINE | ID: mdl-35924167

ABSTRACT

Background: Size-based assessments are inaccurate indicators of tumor response in soft-tissue sarcoma (STS), motivating the requirement for new response imaging biomarkers for this rare and heterogeneous disease. In this study, we assess the test-retest repeatability of radiomic features from MR diffusion-weighted imaging (DWI) and derived maps of apparent diffusion coefficient (ADC) in retroperitoneal STS and compare baseline repeatability with changes in radiomic features following radiotherapy (RT). Materials and Methods: Thirty patients with retroperitoneal STS received an MR examination prior to treatment, of whom 23/30 were investigated in our repeatability analysis having received repeat baseline examinations and 14/30 patients were investigated in our post-treatment analysis having received an MR examination after completing pre-operative RT. One hundred and seven radiomic features were extracted from the full manually delineated tumor region using PyRadiomics. Test-retest repeatability was assessed using an intraclass correlation coefficient (baseline ICC), and post-radiotherapy variance analysis (post-RT-IMS) was used to compare the change in radiomic feature value to baseline repeatability. Results: For the ADC maps and DWI images, 101 and 102 features demonstrated good baseline repeatability (baseline ICC > 0.85), respectively. Forty-three and 2 features demonstrated both good baseline repeatability and a high post-RT-IMS (>0.85), respectively. Pearson correlation between the baseline ICC and post-RT-IMS was weak (0.432 and 0.133, respectively). Conclusions: The ADC-based radiomic analysis shows better test-retest repeatability compared with features derived from DWI images in STS, and some of these features are sensitive to post-treatment change. However, good repeatability at baseline does not imply sensitivity to post-treatment change.

12.
Front Oncol ; 12: 892620, 2022.
Article in English | MEDLINE | ID: mdl-35847882

ABSTRACT

A shift in radiology to a data-driven specialty has been unlocked by synergistic developments in imaging biomarkers (IB) and computational science. This is advancing the capability to deliver "virtual biopsies" within oncology. The ability to non-invasively probe tumour biology both spatially and temporally would fulfil the potential of imaging to inform management of complex tumours; improving diagnostic accuracy, providing new insights into inter- and intra-tumoral heterogeneity and individualised treatment planning and monitoring. Soft tissue sarcomas (STS) are rare tumours of mesenchymal origin with over 150 histological subtypes and notorious heterogeneity. The combination of inter- and intra-tumoural heterogeneity and the rarity of the disease remain major barriers to effective treatments. We provide an overview of the process of successful IB development, the key imaging and computational advancements in STS including quantitative magnetic resonance imaging, radiomics and artificial intelligence, and the studies to date that have explored the potential biological surrogates to imaging metrics. We discuss the promising future directions of IBs in STS and illustrate how the routine clinical implementation of a virtual biopsy has the potential to revolutionise the management of this group of complex cancers and improve clinical outcomes.

13.
Clin Transl Med ; 12(7): e961, 2022 07.
Article in English | MEDLINE | ID: mdl-35839307

ABSTRACT

BACKGROUND: Metastatic epithelioid sarcoma (EPS) remains a largely unmet clinical need in children, adolescents and young adults despite the advent of EZH2 inhibitor tazemetostat. METHODS: In order to realise consistently effective drug therapies, a functional genomics approach was used to identify key signalling pathway vulnerabilities in a spectrum of EPS patient samples. EPS biopsies/surgical resections and cell lines were studied by next-generation DNA exome and RNA deep sequencing, then EPS cell cultures were tested against a panel of chemical probes to discover signalling pathway targets with the most significant contributions to EPS tumour cell maintenance. RESULTS: Other biologically inspired functional interrogations of EPS cultures using gene knockdown or chemical probes demonstrated only limited to modest efficacy in vitro. However, our molecular studies uncovered distinguishing features (including retained dysfunctional SMARCB1 expression and elevated GLI3, FYN and CXCL12 expression) of distal, paediatric/young adult-associated EPS versus proximal, adult-associated EPS. CONCLUSIONS: Overall results highlight the complexity of the disease and a limited chemical space for therapeutic advancement. However, subtle differences between the two EPS subtypes highlight the biological disparities between younger and older EPS patients and emphasise the need to approach the two subtypes as molecularly and clinically distinct diseases.


Subject(s)
DNA-Binding Proteins , Sarcoma , Adolescent , Child , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/therapeutic use , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/therapeutic use , Genomics , Humans , Sarcoma/drug therapy , Sarcoma/genetics , Sarcoma/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/therapeutic use , Young Adult
14.
Cancers (Basel) ; 14(12)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35740573

ABSTRACT

Intravenous leiomyomatosis (IVLM) is a rare benign smooth muscle tumour that is characterised by intravenous growth in the uterine and pelvic veins. Previous DNA copy number and transcriptomic studies have shown that IVLM harbors unique genomic and transcriptomic alterations when compared to uterine leiomyoma (uLM), which may account for their distinct clinical behaviour. Here we undertake the first comparative proteomic analysis of IVLM and other smooth muscle tumours (comprising uLM, soft tissue leiomyoma and benign metastasizing leiomyoma) utilising data-independent acquisition mass spectrometry. We show that, at the protein level, IVLM is defined by the unique co-regulated expression of splicing factors. In particular, IVLM is enriched in two clusters composed of co-regulated proteins from the hnRNP, LSm, SR and Sm classes of the spliceosome complex. One of these clusters (Cluster 3) is associated with key biological processes including nascent protein translocation and cell signalling by small GTPases. Taken together, our study provides evidence of co-regulated expression of splicing factors in IVLM compared to other smooth muscle tumours, which suggests a possible role for alternative splicing in the pathogenesis of IVLM.

15.
Surg Oncol Clin N Am ; 31(3): 559-568, 2022 07.
Article in English | MEDLINE | ID: mdl-35715150

ABSTRACT

Sarcomas are rare and heterogeneous malignancies. Owing to their low prevalence and limited capacity to conduct large-scale clinical trials, understanding the molecular mechanisms of sarcomagenesis has become important in determining appropriate treatment. The Cancer Genome Atlas soft tissue sarcoma (STS) project (TCGA-SARC) was the largest and most comprehensive attempt to profile the genomics of multiple STS subtypes. TCGA-SARC made huge contributions to disease understanding. Since the publication of TCGA-SARC, numerous studies have used molecular profiling to assess STS biology. Herein molecular profiling studies in STS are reviewed and future directions with regard to omics profiling in STS research are discussed.


Subject(s)
Sarcoma , Soft Tissue Neoplasms , Humans , Sarcoma/pathology , Soft Tissue Neoplasms/pathology
17.
Mod Pathol ; 35(9): 1193-1203, 2022 09.
Article in English | MEDLINE | ID: mdl-35449398

ABSTRACT

Correctly diagnosing a rare childhood cancer such as sarcoma can be critical to assigning the correct treatment regimen. With a finite number of pathologists worldwide specializing in pediatric/young adult sarcoma histopathology, access to expert differential diagnosis early in case assessment is limited for many global regions. The lack of highly-trained sarcoma pathologists is especially pronounced in low to middle-income countries, where pathology expertise may be limited despite a similar rate of sarcoma incidence. To address this issue in part, we developed a deep learning convolutional neural network (CNN)-based differential diagnosis system to act as a pre-pathologist screening tool that quantifies diagnosis likelihood amongst trained soft-tissue sarcoma subtypes based on whole histopathology tissue slides. The CNN model is trained on a cohort of 424 centrally-reviewed histopathology tissue slides of alveolar rhabdomyosarcoma, embryonal rhabdomyosarcoma and clear-cell sarcoma tumors, all initially diagnosed at the originating institution and subsequently validated by central review. This CNN model was able to accurately classify the withheld testing cohort with resulting receiver operating characteristic (ROC) area under curve (AUC) values above 0.889 for all tested sarcoma subtypes. We subsequently used the CNN model to classify an externally-sourced cohort of human alveolar and embryonal rhabdomyosarcoma samples and a cohort of 318 histopathology tissue sections from genetically engineered mouse models of rhabdomyosarcoma. Finally, we investigated the overall robustness of the trained CNN model with respect to histopathological variations such as anaplasia, and classification outcomes on histopathology slides from untrained disease models. Overall positive results from our validation studies coupled with the limited worldwide availability of sarcoma pathology expertise suggests the potential of machine learning to assist local pathologists in quickly narrowing the differential diagnosis of sarcoma subtype in children, adolescents, and young adults.


Subject(s)
Rhabdomyosarcoma, Embryonal , Rhabdomyosarcoma , Adolescent , Animals , Child , Humans , Machine Learning , Mice , Neural Networks, Computer , Pathologists , Rhabdomyosarcoma/diagnosis , Rhabdomyosarcoma, Embryonal/pathology , Young Adult
18.
Biomedicines ; 10(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35327375

ABSTRACT

Immunotherapy in soft tissue sarcoma (STS) has experienced a surge of interest in the past decade, contributing to an expanding number of therapeutic options for this extremely heterogenous group of rare malignancies. Immune checkpoint inhibitors (CPIs) targeting the PD-1 and CTLA-4 axes have demonstrated promising responses in a select number of STS subtypes, including rarer subtypes, such as alveolar soft part sarcoma, SWI/SNF-deficient sarcomas, clear cell sarcoma, and angiosarcoma. Multiple pan-subtype sarcoma trials have facilitated the study of possible predictive biomarkers of the CPI response. It has also become apparent that certain therapies, when combined with CPIs, can enhance response rates, although the specific mechanisms of this possible synergy remain unconfirmed in STS. In addition to CPIs, several other immune targeting agents, including anti-tumour-associated macrophage and antigen-directed therapies, are now under assessment in STS with promising efficacy in some subtypes. In this article, we review the state of the art in immunotherapy in STS, highlighting the pre-clinical and clinical data available for this promising therapeutic strategy.

19.
Curr Treat Options Oncol ; 23(1): 78-88, 2022 01.
Article in English | MEDLINE | ID: mdl-35171456

ABSTRACT

OPINION STATEMENT: Advances in proteomic and metabolomic technologies have accelerated our understanding of multiple aspects of cancer biology across distinct tumour types. Here we review the current state-of-the-art in the use of proteomics and metabolomics in soft tissue sarcomas. We highlight the utility of these Omics-based methodologies to identify new drug targets, synthetic lethal interactions, candidate therapeutics and novel biomarkers to facilitate patient stratification. Due to the unbiased and global nature of these profiling methods to assess the levels of protein expression, post-translational modifications such as phosphorylation and glycosylation as well as key metabolites, many of these findings have broad applications not just in specific histotypes but across multiple STS subtypes. Specific examples of proteomic and metabolomic findings that have led to the development of early phase clinical trials of investigational agents will be discussed. While promising, the use of these technologies in the study of sarcoma is still limited, and there is a need for further research in this area. In particular, it would be important to integrate these approaches with other Omics strategies such as genomics and epigenomics as well as implement these tools alongside clinical trials in order to maximize the impact of these tools on our biological understanding and treatment of this group of rare diseases of unmet need.


Subject(s)
Sarcoma , Soft Tissue Neoplasms , Epigenomics/methods , Genomics/methods , Humans , Metabolomics/methods , Proteomics/methods , Sarcoma/drug therapy , Sarcoma/genetics
20.
Cancers (Basel) ; 14(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35053553

ABSTRACT

Recurrent epidermal growth factor receptor (EGFR)-activating mutations have been identified in a rare form of head and neck cancer known as sinonasal squamous cell carcinoma (SNSCC), a malignant disease with a 5-year mortality rate of ~40%. Interestingly, the majority of EGFR mutations identified in patients with primary SNSCC are exon 20 insertions (Ex20ins), which is in contrast to non-small-cell lung cancer (NSCLC), where the EGFR exon 19 deletion and L858R mutations predominate. These studies demonstrate that EGFR Ex20ins mutations are not exclusive to lung cancer as previously believed, but are also involved in driving SNSCC pathogenesis. Here we review the landscape of EGFR mutations in SNSCC, with a particular focus on SNSCC associated with inverted sinonasal papilloma (ISP), a benign epithelial neoplasm. Taking lessons from NSCLC, we also discuss potential new treatment options for ISP-associated SNSCC harbouring EGFR Ex20ins in the context of targeted therapies, drug resistance and precision cancer medicine. Moving forward, further basic and translational work is needed to delineate the biology of EGFR Ex20ins in SNSCC in order to develop more effective treatments for patients with this rare disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...